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Abstract. Fredholm integral equations of the second kind that arise in wave analysis of floating bodies are solved
using a wavelet method. The two-dimensional linear wave-body problem for arrays of rectangular cylinders float-
ing in the free surface of an otherwise unbounded fluid is considered. Both spline wavelets and the Daubechies
wavelets with adaption to an interval are used as basis functions. Ana priori compression strategy taking into
account the singularities of the kernel of the integral equation, which arise at the corners of the geometry, is
developed. The algorithm isO(n), wheren is the number of unknowns. Computations of the hydrodynamic
properties of the cylinders using the compression strategy are performed. The strategy is found to work well.
A very high compression rate is obtained, still keeping a high accuracy of the computations. The accuracy of
the potential close to the corners (singular points) is examined in a special case where an analytical solution is
available.
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1. Introduction

Integral-equation methods represent powerful alternatives in computations of potential flow
around geometries, where an important example is interaction between water waves and
floating bodies. Numerical implementation of the integral equations has often been based on
low-order methods, where the boundary of the geometry is subdivided into piecewise straight
lines in two dimensions, or quadrilaterals in three dimensions. The unknown potential or
source-strength is assumed to be constant over each subdivision of the boundary. For complex
geometries likee.g., the wetted part of an oil platform, this method leads to a large number of
unknowns, if a reasonable accuracy of the potential and the flow shall be obtained, see,e.g.,
[1–3].

The many applications of the low-order method illustrate its power. It is, however, desirable
to investigate higher-order panel methods which have features not included in a low-order
method. Desired features may be the possibility of finding derivatives of the potential, re-
duction of the number of unknowns and thereby the size of the matrices, fast convergence
of the method, and adaptivity. Another aspect relates to geometrical design. Most practical
geometries today are designed by advanced mathematical procedures,e.g., the use of splines.
It is therefore desirable to make available wave-analysis tools which are based on the same
mathematical procedures as in the modelling of the geometry. The purpose is to integrate
efficient and accurate computations of the flow and forces in the design process of,e.g., marine
structures.
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Higher-order panel methods for analysis of wave-body interactions are presently under
rapid development. Particularly we mention the application of spline and spline-Galerkin
methods described in,e.g., [4–5].

Here we shall investigate a different path, namely the application of wavelets in the form of
a multiresolution analysis, to solve Fredholm integral equations of the second kind that arise
in wave analysis of floating bodies. For simplicity we consider the linear two-dimensional
problem. The geometries under consideration are arrays of rectangular cylinders floating in
the free surface. In the multiresolution analysis we use biorthogonal cubic and linear spline
wavelets developed by Mørken and Nygaard [6], see Section 3. The spline wavelets combine
the properties of wavelets and splines. They are biorthogonal and have vanishing moments
in addition to sharing the usual properties of ordinary splines. Application of the biorthogo-
nal spline wavelets also involves a dual multiresolution analysis, where the wavelets of the
latter are non-smooth, however. For comparison we also investigate the performance of the
orthogonal Daubechies wavelets.

The property of vanishing moments of the wavelets makes possible a compression of the
kernel of the integral equation ([7]), and we shall here investigate a certaina priori compres-
sion strategy. We proceed as follows: Typical for linear analysis of wave-body interactions
is that a solution is required for several wavenumbers. The kernel of the integral equations
under consideration is composed by a nonsingular wave part and a part which is independent
of the wavenumber. The latter part is regular for smooth geometries but becomes singular if
the geometry has one or more corners, and this is the case in our applications.

A compression, or ‘sparsifying’, strategy for a set of problems with different wavenumbers
is then first to compute the entire (truncated) kernel for one of the wavenumbers in the range.
For this wavenumber, we discard the smallest elements of the kernel and define from that a
compression mask. For the remaining wavenumbers, where the kernel has no new singular
properties, we compress the kernela priori using the defined compression mask. The compu-
tational cost of solving the optimally compressed system isO(n), wheren is the number of
unknowns.

Computations of wave properties and hydrodynamic forces on arrays of rectangular cylin-
ders are performed by means of the compression strategy. We always obtain a very high
compression rate, still keeping a high accuracy of the computations. The accuracy of the
potential close to the corners (singular points) is closely examined in a special case where an
analytical solution is available. The cubic spline wavelets are found to have better properties
than the linear spline wavelets. The application of the Daubechies wavelets is found to be not
so efficient from a computational point of view.

The paper is organized as follows: In Section 2 the boundary-value problems are formu-
lated. In Section 3 we discuss the multiresolution analysis and the wavelet bases. The solution
of the integral equation is given in Section 4. Thea priori compression strategy is described in
Section 5. We illustrated the method in Section 6 by evaluating some hydrodynamic properties
of arrays of rectangular cylinders, and Section 7 is a conclusion. We have added three appen-
dices: Appendix A, describing the construction of a (biorthogonal) multiresolution analysis;
B, the practical approximation in wavelet spaces; and C, the Schwarz–Christoffel mapping for
the flow around a square cylinder.
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2. The boundary-value problems

For simplicity we assume two-dimensional motion and consider half-immersed bodies in a
free surface, either exposed to incoming waves or oscillating in otherwise calm water. We
assume the fluid to be inviscid, incompressible and homogeneous, the motion irrotational,
and the depth to be infinite. Coordinates(x, y) are introduced, withx being horizontal in the
mean free surface andy vertical. If time harmonic motion with frequencyω is assumed, the
potential is of the form

8 = Re(χ̂eiωt ), (1)

whereχ̂ , according to the assumptions, satisfies the Laplace equation

∇2χ̂ = 0 (2)

in the fluid domain, fory < 0,−∞ < x <∞. The free surface boundary condition is

∂χ̂/∂y = νχ̂ (3)

aty = 0, whereν = ω2/g denotes the wavenumber. Radiation conditions in the far field gives
that the radiation and scattering potentials satisfy

potential ∼ eνy∓iνx for x →±∞. (4)

At the contourSB of the body (bodies), we have for the radiation problem

∂χ̂/∂n = nj, (5)

wheren1 = i · n for the sway problem andn2 = j · n for the heave problem. (For roll,
n6 = xn2 − yn1.) Here,n ≡ (n1, n2) is the unit normal vector pointing out of the fluid, and
∂/∂n denotes the directional derivativen · ∇(·). For the diffraction problem, the boundary
condition onSB reads

∂χ̂/∂n = 0, (6)

and we write

χ̂ ≡ χ̂D Aig

ω
= (χ̂0+ χ̂7)

Aig

ω
, (7)

whereA denotes the amplitude of the incoming waves,

χ̂0 = eνy−iνx (8)

denotes the (unit) incoming wave potential andχ̂7 the scattering potential. By applying Green’s
theorem toχ̂ and the appropriate Green function, defined below in (14), we obtain the usual
integral formulation for the radiation problem,∫

SB

(
χ̂(ξ)

∂G(ξ , x)
∂nξ

− ∂χ̂(ξ)
∂nξ

G(ξ , x)
)

dSξ =
 −πχ̂(x) on SB

−2πχ̂(x) in the fluid
(9)

whereξ = (ξ, η), x = (x, y). The equations for the diffraction problem become
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∫
SB

χ̂D(ξ)
∂G(ξ , x)
∂nξ

dSξ − 2πχ̂0(x) =
 −πχ̂D(x) onSB

−2πχ̂D(x) in the fluid
. (10)

We introduce a parametrisation

x = (p1(t), p2(t)), ξ = (p1(u), p2(u)), (11)

and may then write (9) and (10) as

χ(t) =
∫ 1

0
K(t, u)χ(u) du+H(t), (12)

χD(t) =
∫ 1

0
K(t, u)χD(u) du+HD(t). (13)

We solve independently (12) withχ as unknown for the radiation problem, and (13) withχ̂D
as unknown for the diffraction problem.

The wave Green function satisfying Laplace’s equation (2) and the boundary conditions
(3) and (4), given in Wehausen and Laitone [8, Equations 13.22–13.28], reads

G(ξ , x) = logr − logr1 + 2Re

(
eZ
∫ Z

∞
e−w

w
dw

)
+ 2π ieZ, (14)

wherer = [(x−ξ)2+(y−η)2]1/2, r1 = [(x−ξ)2+(y+η)2]1/2, andZ = −iν(ξ−x)+ν(η+y),
−3π/2< arg(Z) < −π/2. Then,

K(t, u) =
[
(ξ − x)n1+ (η − y)n2

r2
− (ξ − x)n1+ (η + y)n2

(r1)2

+ 2νRe

{(
eZ
∫ Z

∞
e−w

w
dw + 1

Z

)
(−in1+ n2)

}
(15)

+ 2νπ ieZ(−in1+ n2)

]√
ξ ′2+ η′2 (16)

and

H(t) =
∫ 1

0
nj

[
logr − log r1+ 2eZRe

(∫ Z

∞
ew

w
dw

)
+ 2π ieZ

]√
ξ ′2+ η′2 du, (17)

HD(t) = 2πeνy−iνx, (18)

wherenj = n1 for the sway problem andnj = n2 for the heave problem. All coordinate
functions depend on the parameterst andu, andξ ′ = dp1(u)/du andη′ = dp2(u)/du.

3. The wavelet method – multiresolution analysis

We shall solve the integral equations (12) and (13) making use of awavelet method. This is
done by expanding the unknown potential, the kernel, and the right-hand side of the integral
equation in amultiresolution analysis, see,e.g., [9, pp. 129–167] and [10]. We will use the
terms multiresolution analysisand wavelet basisinterchangeably. The wavelets we apply
are spline wavelets [6] and the Daubechies wavelets [9, pp. 167–215]. Briefly, expanding a
functionf in a multiresolution analysis means thatf is decomposed as
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f = f0+ g0+ g1+ · · · =
∑
k

c0
kφ

0
k +

∑
k

d0
kψ

0
k +

∑
k

d1
kψ

1
k + · · · , (19)

where the functionsgj are corrections to a remainderf0, capturing different frequencies.
In (19), we have introduced thescaling functionsφjk and thewavelet functionsψj

k . These
functions are the translated and scaled versions of the so-calledmother scaling functionφ and
themother waveletψ , and they are given by

φ
j

k (t) = 2j/2φ(2j t − k), (20)

ψ
j

k (t) = 2j/2ψ(2j t − k). (21)

(We keep the superscriptj for the purpose of making a smoother transition into the next
section.) The functionsφ0

k span a spaceV0, and the multiresolution analysis consists of a
sequence of nested spaces· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · . Two properties of the multiresolution
analysis are thatf ∈ Vj ⇔ f (2x) ∈ Vj+1 (scaling) andf (x) ∈ V0 ⇔ f (x − k) ∈ V0

(translation). From this it follows that{φjk } forms a basis ofVj for all j . Likewise, {ψj

k }
forms a basis for thewavelet spaceWj defined as the complement ofVj in Vj+1, such that
Vj +Wj = Vj+1. If the functionf of (19) is inVj , we now see thatf is decomposed into an
approximationf0 with increasingly finer correctionsg0, . . . , gj−1.

The action of combining the functionsfj ∈ Vj andgj ∈ Wj into fj+1 ∈ Vj+1 is called
reconstruction, while the splitting offj+1 into fj andgj is calleddecomposition. For wavelets
with compact support, these are fast procedures (filter operations) of orderO(m · n) wheren
is the number of basis functions spanning the space, andm is the filter length (length of the
support of the mother wavelet.)

The situation described corresponds to functions defined on all ofR, andk ∈ Z. For func-
tions on an interval, which we use, additional (and modified) scaling and wavelet functions
near the ends of the interval,end functions, are required. For the Daubechies wavelets, we use
the modification due to Cohenet al. [11], and for the biorthogonal spline wavelets, we use the
construction of Mørken and Nygaard [6]. Further details are given in Appendix A.

We define the inner product〈f, g〉 ≡ ∫ 1
0 f (t)g(t) dt and assume the interval under consid-

eration to be[0,1]. The coefficientscjk anddjk in (19) are obtained by

c
j

k = 〈f, φ̃jk 〉, d
j

k = 〈f, ψ̃j

k 〉,
where the multiresolution analysis given byφ andψ , together with adual multiresolution
analysis, determined by the dual scaling functioñφ and the dual wavelet̃ψ , constitute a
biorthogonal multiresolution analysis. (See also Appendix B for the computation of thec

j

k and
d
j

k .) The scaling and wavelet functions of the dual multiresolution analysis span corresponding
spacesṼj andW̃j , where

Ṽj ⊥ Wj, Vj ⊥ W̃j ,

and

〈φ̃, φ(· − k)〉 = 〈ψ̃, ψ(· − k)〉 =
 1, k = 0

0, k 6= 0
.
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(Whenφ̃ = φ andψ̃ = ψ , we have an orthogonalmultiresolution analysis,e.g., the Daubechies
multiresolution analysis.) We note that an orthogonal wavelet basis constitutes its own dual
basis, and that the role of a basis and its dual may be interchanged if they span the same
approximation spaces.

Finally, we note that a waveletψ is said to haveN vanishing moments when

〈ψ, xm〉 = 0, m = 0, . . . , N − 1,

and〈ψ, xN 〉 6= 0 are satisfied. This property we shall later make use of.

3.1. BIORTHOGONAL SPLINE WAVELETS

As mentioned, we will primarily use a particular set ofbiorthogonal wavelets, the biorthogo-
nal spline wavelets developed in [6]. These wavelets are constructed within the framework of
the lifting scheme, see [12] and [13].

This basis of spline wavelets has many advantages, not the least being the connection to
splines, considering the extensive use of spline bases in other contexts,e.g., for the modelling
of geometries. The application of these wavelets can be regarded as an extension of the use of
splines. We have nested approximation spaces spanned by splines, and the differences between
these spaces are the wavelet spaces. For examples of the spline wavelet basis functions, see
Figure 1. (In order to plot these basis functions, they arelifted from a coarse space to a finer,
sayVJ , and then the coefficients are plotted. Note that in the case of the dual functions (c)
and (d) of Figure 1, thiscascade algorithmdoes not converge inL∞, although it does converge
in L2, see [9, pp. 202–213].)

By not restricting the dual functions to be splines, we can also make the support of the
dual function compact (of finite length), making possible an efficient implementation. For
spline wavelets of degreed with N vanishing moments, we have that the support of the
scaling function has lengthd + 1 and the support of the wavelet has lengthd + N . The
corresponding supports of the dual scaling function and the dual wavelet ared + 2N − 1 and
d + N , respectively. (A support of lengthm means thatm adjacent basis functions overlap
each other, and that the decomposition and reconstruction from one levelj to one below or
above can be performed by a convolution with a filter of lengthm.)

From Figures 1 and 2 we see that the dual scaling functions and dual wavelets typically
are less smooth than the scaling functions and wavelets. On the other hand, the smoothness
increases with the number of vanishing moments. In practice, lack of smoothness in the dual
bases is not a problem, because only the kernel of the integral equations will be expanded in
the tensor product of the non-dual and the dual multiresolution analysis, while the unknown
potential will be expanded in the smooth spline wavelets.

The spline wavelets have another nice property which the Daubechies bases do not have,
namely that they are symmetric. Finally, the construction of the biorthogonal spline wavelets
has made the construction of coarse wavelet spaces (with few basis functions) easier than in
the case of the interval-adaption of the Daubechies bases. This is important for problems with
complex geometries with moderate accuracy requirements of the solution.

3.2. THE DAUBECHIES BASIS

By using the somewhat stronger restriction of orthogonality, and also requiring that the wavelets
have the shortest possible support, one obtains theDaubechies wavelets, see [9, pp. 167–215].
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Figure 1. The leftmost and inner linear spline scaling functionsφk (a), waveletsψk with two vanishing moments
(b), dual scaling functions̃φk with two vanishing moments (c), dual waveletsψ̃k with two vanishing moments (d),
cubic spline scaling functionsφk (e), and corresponding wavelets with four vanishing moments (f).
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Figure 2. The leftmost, inner and the rightmost scaling functionsφ0, φ8 andφ15 (a), and the leftmost, inner and
rightmost wavelet functionsψ0, ψ8 andψ15 (b), of the modified Daubechies basis forN = 3.

Even though orthogonality and short support are desirable features, two disadvantages of the
Daubechies wavelets are that the scaling functions and wavelets are non-symmetric, and that
they for smallN are less smooth thane.g., the spline wavelet basis. The scaling and wavelet
functions of the basis withN vanishing moments have support with length 2N − 1. However,
their smoothness is asymptoticallyCµN (N → ∞) whereµ ≈ 0 · 2, see [9, p. 242]. In
order to get a basis for functions on an interval we have made use of the adaption to an
interval described by Cohenet al. [11]. Some of the scaling and wavelet functions for this
basis, forN = 3, are depicted in Figure 2. The inner functions are not very smooth, but
since they have three vanishing moments the approximation spaces include polynomials up to
quadratic degree. The end functions are in fact piecewise polynomial themselves on parts of
their supports.

Being orthogonal, the application of the Daubechies wavelets to the integral equation will
be slightly simplified. In computations we use the Daubechies basis withN = 3 vanishing
moments, for which we have been able to obtain precomputed filter cofficients.

4. Solution of the integral equations

We now apply the method based on the multiresolution analysis to the integral equations (12)
and (13). We truncate and expand the unknown potentialχ and the functionH in the ba-
sis of VJ , i.e., the finest level, and get̄χ and H̄ . We then expand̄χ and H̄ in the spaces
WJ−1, . . . ,W0 andV0, and denote these expansions as the(wavelet) decompositionsof χ̄ and
H̄ . This gives

χ̄ =
∑
k

cJχ,kφ
J
k (22)

=
J−1∑
j=0

∑
k

d
j

χ,kψ
j

k +
∑
k

c0
χ,kφ

0
k =

J−1∑
j=0

ψ jT djχ + φ0T c0
χ,
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H̄ =
∑
k

cJH,kφ
J
k (23)

=
J−1∑
j=0

∑
k

d
j

H,kψ
j

k +
∑
k

c0
H,kφ

0
k =

J−1∑
j=0

ψjT djH + φ0T c0
H , (24)

where

ψj = (ψj

0 , ψ
j

1 , . . . , ψ
j

2j−1)
T , φj = (φj0, φj1, . . . , φj2j−1)

T , (25)

djχ = (djχ,0, djχ,1, . . . , djχ,2j−1)
T , cjχ = (cjχ,0, cjχ,1, . . . , cjχ,2j−1)

T , (26)

and(·)T denotes transposition. We definedjH andcjH similarly todjχ andcjχ . (In (25) and (26),
we have introducedφj andcjχ , j > 0, for later use.)

We next expand the kernel in the two-dimensional tensor-product of the one-dimensional
non-dual and dual multiresolution analysis,i.e., we project the kernelK(t, u) onto the space
VJ×ṼJ and decompose into the different wavelet spaces. Generalisation of a one-dimensional
multiresolution analysis to higher dimensions is treated in,e.g., [10]. For the truncated kernel,
we obtain

K̄(t, u) =
∑
k,l

cJ,k,lφ
J
k (t)φ̃

J
l (u) (27)

=
J−1∑
j=1

∑
k,l

[
dhj,k,lψ

j

k (t)φ̃
j

l (u)+ dvj,k,lφjk (t)ψ̃j

l (u)+ ddj,k,lψj

k (t)ψ̃
j

l (u)
]

+
∑
k,l

c0,k,lφ
0
k (t)φ̃

0
l (u) (28)

=
J−1∑
j=1

[
ψ j (t)T Dh

j φ̃
j
(u)+ φj (t)T Dv

j ψ̃
j
(u)+ ψ j (t)T Dd

j ψ̃
j
(u)
]

+ φ0(t)T CJ φ̃
0
(u), (29)

wherek andl are to be summed from 0 toKj − 1, and we have introduced the matricesDh
j =

(dhj,k,l)k,l, D
v
j = (dvj,k,l)k,l, D

d
j = (ddj,k,l )k,l andCj = (cj,k,l )k,l. Using the biorthogonality,

(orthogonality in the Daubechies case), we get

cj,k,l =
∫∫

K(t, u)φ̃
j

k (t)φ
j

l (u) dt du, (30)

dhj,k,l =
∫∫

K(t, u)ψ̃
j

k (t)φ
j

l (u) dt du, (31)

dvj,k,l =
∫∫

K(t, u)φ̃
j

k (t)ψ
j

l (u) dt du, (32)
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ddj,k,l =
∫∫

K(t, u)ψ̃
j

k (t)ψ
j

l (u) dt du, (33)

where the integrals are to be taken over the support of the integrands.
Equivalent to this approximation of the kernel is the approach where one uses the same

approximation (22) of the unknown and then seek the solution which makes the residuals zero
when weighted by the duals as test functions.

In the computational procedure we first find the coefficientscJH,k of the expansion (24) for
H̄ , i.e.,

cJH,k = 2J/2
∫
H(t)φ̃(2J t − k) dt, (34)

and the coefficientscJ,k,l of the expansion (27) for̄K, i.e.,

cJ,k,l =
∫∫

K(t, u)φ̃Jk (t)φ
J
l (u) dt du, (35)

see Appendix B. To find the coefficientscjH,k, d
j

H,k of (23) and the coefficientscj,k,l, dhj,k,l,
dvj,k,l, d

d
j,k,l of (28), for j < J , we successively apply the decomposition algorithm, which is

given by the filter coefficients for the particular wavelet bases.
Introducing

χ̄ = (dJ−1T
χ ,dJ−2T

χ , · · · ,d0T
χ , c

0T
χ )

T and H̄ = (dJ−1T
H ,dJ−1T

H , · · · ,d0T
H , c

0T
H )

T , (36)

and, using (29), we may write the discretized version of the integral equation (12) as

χ̄ − T̄ χ̄ = H̄, (37)

whereT̄ χ̄ is given by

(T̄ χ̄)(t) =
∫
K̄(t, u)χ̄(u) du

=
J−1∑
j=1

[
ψ j (t)T (Dh

j c
j
χ +Dd

j djχ)+ φj (t)T Dv
jd
j
χ

]+ φ0(t)T C0cjχ .

(38)

By expandingK̄ in the non-dual and the dual multiresolution analysis, we see that both or-
thogonal and biorthogonal bases fit into the scheme. We note that the right-hand side of (38)
is not of the form of a function decomposed in the multiresolution analysis, like (23), due
to the termsφj (t)T Dv

jd
j
χ , for j > 0. In order to get the projection of(T̄ χ̄ ) in (38) onto

WJ−1⊕ · · · ⊕W0⊕ V0, we iteratively decomposeφj (t)T Dv
jd
j
χ for all j > 0.

The operatorT̄ may then be written as̄T = LT̄NSL
T , whereL is the composition of

the decompositions fromVJ down to the coarsest spaceV0. This is implemented as matrix
multiplications where the sparsity of the matrices is accounted for. The matrixT̄NS contains
the successive two-dimensional wavelet decompositions of the truncated kernelK̄(t, u), and
T̄NS on non-standard form([7], for a different kernel) is then given by
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T̄NS =



0 Dv
J−1

Dh
J−1 Dd

J−1

. . .

0 Dv
1

Dh
1 Dd

1

C0 Dv
0

Dh
0 Dd

0



, (39)

where the empty parts contain zeros. (At the coarsest levelj = 0,C0,Dv
0,Dh

0 andDd
0 may be

scalars for the unmodified Daubechies basis, suitable for periodic problems.)
Since the resulting system (37) of equations in general is non-symmetric, we have chosen

to use the method of generalised conjugate residuals, without truncation or restart (GCR(∞)),
as described in [14, Chapter 3]. Without any explicit preconditioning, the size of the residual
evaluated inL2-norm reaches a prescribed level of precision (10−10) typically after about
20–30 iterations. The number of iterations is found to be independent of the numbern of
unknowns, for the present examples. (Results not shown.) In the next section we will see
that the cost of each step in the iteration is proportional ton for an optimally compressed, or
sparsified, system. Other iterative solvers based on the application of the discretized integral
operator (38) could also be used, as it is this operator which is optimized by the compression
of its elements.

5. Compression strategy

We now make use of the vanishing moments of the wavelets in computing the matrix elements
of (39). Consider, for example, the matrix elementsdhj,k,l. We note that the kernel (16) can be
decomposed byK = K1+K2 where

K1 = (ξ − x)n1+ (η − y)n2

r2

√
ξ ′2+ η′2 = −cos(r,n)

r

√
ξ ′2+ η′2, (40)

andr = x− ξ ,K2 = K −K1. For a smooth contour, cos(r,n)/r is smooth forr → 0;

lim
r→0
−cos(r,n)

r

√
ξ ′2+ η′2 = −1

2
(p′′1p

′
2− p′′2p′1)

√
ξ ′2+ η′2, (41)

where(p1, p2) is the parametrisation (11) of the contour. For a contour with a corner, however,
K1 behaves likeO(1/r) whenr → 0, which means thatK1 in this case is singular.

The remainder of the kernel,K2, is not singular (for points below the free surface). This
suggests that we write

dhj,k,l =
∫∫

K(t, u)ψ̃
j

k (t)φ
j

l (u) dt du

=
∫∫

K1(t, u)ψ̃
j

k (t)φ
j

l (u) dt du+
∫∫

K2(t, u)ψ̃
j

k (t)φ
j

l (u) dt du.
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Consider now a parameter domain, whereK1(t, u) is smooth enough to be expanded in a
Taylor series int aboutt0 = 2−j k, keepingu fixed. This will be when the geometry has no
corner for anyt or u in the support ofψ̃j

k (t) orφjl (u). We can then expandK = K1+K2, and
insert the expansion into (42), and (making use of the vanishing moments) it follows that

dhj,k,l =
2j

N !
∫∫

∂NK

∂tN
(τ, u)(t − t0)Nψ̃(2j t − k)φ(2j u− l) dt du, (43)

for someτ ∈ supportψ̃j

k .

IntroducingI ψ̃ = support(ψ̃), I ψ̃j,k = support(ψ̃j

k ), I
φ = support(φ), andI φj,l = support(φjl ),

we find that

|dhj,k,l| ≤
2j

N ! sup
τ∈I ψ̃j,k,u∈Iφj,l

∣∣∣∣∂NK∂tN (τ, u)
∣∣∣∣ sup|ψ̃ | sup|φ|

∫∫
(t − t0)N dt du. (44)

We have
∫∫
(t − t0)N dt du = |I ψ̃j,k|N+2/(N + 1). Since|I ψ̃j,k| = 2−j |I ψ̃ |, we obtain

|dhj,k,l| ≤ εj,k,l (45)

where

εj,k,l ≡ 2−j (N+1)

(N + 1)! |I
ψ̃ |N+2 sup

τ∈I ψ̃j,k ,u∈Iφj,l

∣∣∣∣∂NK∂tN (τ, u)
∣∣∣∣ sup|ψ̃ | sup|φ|.

A similar analysis for the other coefficients may be carried out. This illustrates that the coef-
ficients corresponding to the parts of the parameter space where the kernel is smooth, will be
small, and that the greater the number of vanishing moments, the smaller these elements will
be.

WhenK has singularities in the support ofψ̃j

k (t) orφjl (u), we cannot compress this matrix
element. However, when we are sufficiently far away from any singularity (corner), it will be
small enough to be discarded.

A typical feature of water wave problems, is the need for solving the problem for a range
of frequencies. We have decomposed the kernel into a singular partK1 and a regular partK2,
whereK1 does not depend on the wavenumberν, only on the geometry. We have seen that
the compression is done by discarding elements for which the basis functions do not have
singularities in their supports. This leads to the following compression strategy for a set of
problems with different wavenumbers:
1. Compute the entire matrix for one of the wavenumbers in the range. We will do this for

the largest wavenumber in the range, because this has the largest contributingK2.
2. Compressa posterioriby discarding the smallest elements. Store the compression mask

thus obtained.
3. For the remaining wavenumbers, compress the matricesa priori by using the compression

mask.

5.1. NUMERICAL RESULTS FOR THE COMPRESSION STRATEGY

In order to illustrate thea priori compression strategy we perform computations of the ker-
nel K̄ for two floating rectangular cylinders, namely geometry B, depicted in Figure 5 in
Section 6. The results are shown in Figures 3 (cubic spline wavelets) and 4 (linear spline
wavelets), where the matrix (39) is organised as follows;
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C0 Dv

0
Dh

0 Dd
0
Dv

1

Dh
1 Dd

1

Dv
2

Dh
2 Dd

2

Dv
3

Dh
3 Dd

3

 . (46)

Each matrix element is given an intensity proportional to the logarithm of its size. The darkest
pixels correspond to the largest matrix elements, which will be retained. The smallest elements
(brightest pixels) are the ones which will be discarded by the compression. We see the large
dvj,k,l, d

h
j,k,l andddj,k,l values caused by the corners of the geometry. Besides the elements in

C0, those are exactly the elements retained when compression is applied. (The bright, square
parts of the uncompressed submatrices are due to two points being on the same vertical edge,
of which the geometry has four.)

We first compute the entire matrix for wavenumberν = 2, see Figures 3 (a) and 4 (a).
The matrices are compressed by discarding (a posteriori) elements smaller than a certain
threshold, which here is chosen asεcubic = 0·1 for the cubic case, andεlinear = 0·2 for
the linear case, see Figures 3 (b) and 4 (b), respectively. We observe significant compression
for both the linear and cubic spline bases. From this the compression mask is defined. We
then perform compression of the corresponding matrices for different wavenumbers, namely
ν = 0 and ν= 1 using the defined compression mask. The result is shown in Figures 3 (c-d)
and 4 (c-d). We also performa posterioricompression forν = 0 andν = 1 with the same
thresholdsεcubic = 0·1 andεlinear = 0·2, and find that no additional elements are discarded
by thea priori compression. Further discussion of the use of the different bases is given in
Section 6.

It is of interest to estimate the number of matrix elements retained after compression. We
proceed as follows: Assume that the geometry has a number ofC corners (here we have
four corners). Furthermore we assume that the finest space isVJ , that the wavelets have
support of lengthm and haveN vanishing moments. For all wavelet coefficients which have
no singularity in their support,i.e., there is no corner for anyt in the support ofψ̃j

k (t) or u in
the support ofφjl (u), assume thatN is so large thatεj,k,l < ε̂ for these coefficients. Then, the
number of remaining wavelet coefficients will be less than or equal to (C corners, 3 wavelet
submatrices, 2 strips of 2j ·m coefficients for each singularity, levelsj = 0, . . . , J − 1)

J−1∑
j=0

C · 3 · 2(2j ·m) = const.·m · (2J − 1) ≤ const.·m · n (47)

wheren = 2J is the number of unknowns for an uncompressed system. For wavelets with
sufficiently many vanishing moments, we see that the number of retained elements isO(n).

We note that in practice most of the elements of the strips of size 2j ·m, j = 0, . . . , J−1, in
our compression strategy are discarded, thus making the number of retained matrix elements
smaller than estimated in (47). This is because these elements are smaller than the given
threshold even ifK̄ is not smooth on the support of the corresponding wavelets.

With the compression strategy we can use a moderateN and thus a moderatem, while still
retaining a high accuracy of the computations and a high compression rate of the matrix.
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Figure 3. Cubic spline wavelet basis. The matrix before compression (a), the elements retained after compression
with ε = 0·1 and ν= 2 (b), the elements retained after compression forν = 1 and the same compression mask
(c) and forν = 0 and again the same compression mask (d). Geometry B (Figure 5).

6. Computation of wave properties and hydrodynamic forces

We now apply the method to compute hydrodynamic forces and reflection properties of a
single or multiple rectangular cylinders which are floating in the free surface, see Figure
5. Geometry A (a single rectangular cylinder) is chosen because of its simplicity, and for
this geometry we also have available an analytical solution for the sway problem when the
wavenumberν → 0. Geometries B and C are relevant for a sectionwise investigation of a
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Figure 4. Same as Figure 3, but linear spline wavelet basis andε = 0·2.

catamaran, in the context of application of strip theory. Geometry D is chosen because we
want to investigate the performance of the method for anN-body problem, with largeN .
(The latter geometry may be relevant for hydrodynamic analysis of large floating or anchored
structures like,e.g., an airport.)

We consider both the radiation and the diffraction problem. In the radiation problem (see
Equations 12 and 17) we compute the added mass and damping coefficients in sway and heave,
i.e., (a11, b11) and(a22, b22), which are defined by

ω2aij − iωbij = −iωρ
∫
SB

χ̂j ni dS. (48)
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Figure 5. Geometries, henceforth referred to as geometry A to D. All cylinders are twice as wide (beam 2T0) as
deep (draughtT0), and the distance between the center of two adjacent cylinders is 4T0 for geometry B, 12T0/5
for geometry C and 40T0 for geometry D.

In the diffraction problem (see equations 13 and 17) we compute the reflection coefficient
R, where

χ̂7→ Reiνx+νy (49)

asx →−∞, and the transmission coefficientT , where

χ̂7→ (T − 1)e−iνx+νy = (T − 1)χ̂0 (50)

asx →∞, and also the horizontal exciting forceX1, determined by

X1 = −ρ
∫
SB

(χ̂0 + χ̂7)ni dS (51)

Conservation of energy gives that|R|2 + |T |2 = 1, which provides a check of the computa-
tions.

6.1. COMPARISON OF DIFFERENT BASES– ADDED MASS AND DAMPING COEFFICIENTS

First, we compare application of the different bases; linear spline wavelets, cubic spline wavelets
and Daubechies wavelets. In Figure 6,a11 and b11 for geometry A in the sway mode of
motion are shown for selected wavenumbers 0< ν < 1·5. In addition to the solution of
the uncompressed systems, solutions for compression with different thresholds are shown.
These thresholds are chosen to highlight the differences between the bases when subjected to
massive compression. The compression error depends on both the threshold and the wavelet
basis, so the thresholds are selected to get comparable compression ratios for the different
bases, when possible. We may then compare the errors. We plot the results for the linear
spline wavelet basis with compression thresholdsεlin., 1 = 0·1 and εlin., 2 = 0·6, the cubic basis
with compression thresholdsεcubic, 1 = 0·12 andεcubic, 2 = 10 and the Daubechies basis with
compression thresholdεDaub., 1= εDaub., 2= 100. (The latter large compression thresholds mean
that the compression ratio is still less than for the other bases.)

From Figure 6, we see that only the linear basis (Figure 6 a) gives a visibly less accurate
result than the other two bases. The linear basis has fewer vanishing moments than the other
two, and its scaling functions are less smooth than those of the cubic spline basis. Figure 6 (c)
shows that the Daubechies basis gives a more accurate result than the linear spline basis.

However, a direct comparison like this with the Daubechies basis is made difficult because
the interval-adaption of the Daubechies basis forces us to use at leastN scalingend-functions.
This means that the coarsest level forN = 3 will be J = 3, giving 8 scaling functions, com-
pared to the linear spline basis, where we have only 3 scaling functions on the coarsest level.
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Figure 6. Comparison of linear spline wavelets (a), cubic spline wavelets (b), and Daubechies wavelets (c). Added
massa11, normalized byρT 2

0 , and damping coefficientsb11, normalized byρT 2
0 ω, for geometry A. Crosses and

rings: no compression. Solid and dashed lines:a priori compression with compression thresholdε·,1. Dash-dotted
and dotted lines:a priori compression with compression thresholdε·,2.
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Figure 7. |R|2 + |T |2 for geometry A. Comparison of linear spline wavelets (solid line), cubic spline wavelets
(dashed line), and Daubechies wavelets (dash-dotted line). Without compression (a) and witha priori compres-
sion (b). Compression masks were determined forν = 1·5, andεlin., 1 = 0·1, εcubic, 1= 0·12, andεDaub., 1= 100,
as in Figure 6.

Also, non-normalisation of the end-wavelets excludes these from the compression. The effect
is that coarse discretizations, even combined with large thresholds, lead to less compression
than for the spline wavelet bases.

In Figure 7 we have graphed|R|2 + |T |2 for geometry A, without compression (a) and
compressed with thresholdsεlin., 1 = 0·1, εcubic, 1= 0·12, andεDaub., 1= 100, as in Figure 6, and
compression masks determined forν = 1·5 in (b). Without any discretization or numerical
error, we have that|R|2 + |T |2 = 1, so we see that the proposed method do not conserve
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the energy perfectly. The number of discarded matrix elements is almost the same for the
linear and cubic bases, and from Figure 7 (b) we see that the cubic basis is the most accurate
of the two. Since the compression mask was determined forν = 1·5, and the kernel gets
smoother for smallerν, we expect the compression mask to yield better results for smaller
wavenumbers, as observed in the figure, since the significance of the discarded coefficients
decreases. The Daubechies basis starts out better for the higher wavenumbers because of a
smaller compression rate, as commented on above. For the smaller wavenumbers, since the
significance of the discarded coefficients decreases, we approach a situation like the one in (a),
where the spline wavelets, and particularly the cubic one, performs better. One of the reasons
for this is believed to be the lesser smoothness of the Daubechies basis as compared to the
spline wavelet bases.

6.2. COMPUTATIONS WITH CUBIC SPLINE WAVELETS AND DIFFERENT THRESHOLDS

For geometry A, B and C, we have solved equation (12) and (13) for the heave problem,
and the added mass coefficienta22 and the damping coefficientb22 are depicted in Figure 8
and 9 (a). The computations are performed with the cubic basis andJ = 4. When compressing
with thresholdε = 0·1, 96·7% of the matrix for geometry A is discarded, and 97·7% for
geometry B. This corresponds to retaining approximately 19·12 and 162 elements per cylinder,
respectively. When using the thresholdε = 0·02, 95·0% and 96·9% will be compressed, giv-
ing approximately 23·52 and 18·62 elements per cylinder. For geometry B we get a moderate
physical resonance for wavenumbers aroundν ≈ 0·24. At this resonance, we see that a minor
error in the added mass coefficient due to the compression becomes visible.

For geometry C, we get a strong physical resonance effect atν ≈ 0·675. This geometry
was chosen for the purpose of comparison (not shown here) with 3d computations by Newman
and Sclavounos [15] for a catamaran, using a low-order panel method. Compression with
thresholdsε = 0·02 andε = 0·1, give compression ratios 96·7% and 97·7%, i.e., 19·12 and
15·92 matrix elements per cylinder. We notice that the computed resonance frequency differs
slightly from the correct one when the compression is too strong. We see the same effect in
the plots of the reflection and transmission coefficients, Figure 9 (b). In Figure 9 (c) we see
that also|R|2+ |T |2 will differ from 1 around the resonant frequency.

6.3. A ROW OF CYLINDERS

A more involved case is geometry D. For this geometry, we want to examine the compression
scheme in computing the forces on the individual cylinders. We can also make qualitative
comparisons with the results in 3 dimensions by Maniar and Newman [5].

In Figure 10 we show the hydrodynamic forces and the reflection/transmission properties
for the array of cylinders, using cubic spline wavelets. The wavenumbers are chosen close to
the smallest resonant wavenumber, approximately atν = 2π/(2L) ≈ 0·31. We note that some
inaccuracies occur at the physical resonance, wheree.g., |R|2+ |T |2 does not quite add up to
one.

If we compute the force component|Xj

1| on each of the cylindersj = 1, . . . ,15, and
normalize with respect to|X1| for a single cylinder, we would expect the force to be largest
for the cylinder(s) at the resonant wavenumber. We can see that this in fact happens forν =
0·28296, where the maximal force on cylinder number 8 is about 8 times that for one isolated
cylinder, Figure 10 (c). The results show that a significant relative error in the load distribution
on the individual cylinders can only be detected for a high compression rate, and only in the
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Figure 8. Added massa22, normalized byρT 2
0 , and damping coefficientsb22, normalized byρT 2

0 ω, for geom-
etry A (a) and geometry B (b). Crosses and rings: no compression. Solid lines:a priori compression with
compression thresholdε = 0·02. Dashed lines:a priori compression with compression thresholdε = 0·1. Cubic
basis,J = 4.
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Figure 9. Added massa22, normalized byρT 2
0 , and damping coefficientsb22, normalized byρT 2

0 ω (a). |R| and

|T | (b), and|R|2+|T |2 (c). Crosses and rings: no compression. Solid lines:a priori compression with compression
thresholdε = 0·02. Dashed lines:a priori compression with compression thresholdε = 0·1. Cubic basis,J = 4,
geometry C.
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close vicinity of the resonant wavenumber. For the cylinder with the highest load, the relative
error due to the compression is then about 10% for thresholdε = 0·1 and compression ratio
98·56% (corresponding to 12·62 retained matrix elements per cylinder.) Forε = 0·01 and
compression ratio 98·37% (corresponding to 13·42 retained matrix elements per cylinder) the
relative error is less than 1%. Overall, we get good accuracy with high compression.

We see that the compression introduces a minor shift of the resonant frequency, as illus-
trated in Figures 10 (a) and (b). The shift appears as an error in the force on the cylinders for
the frequencies just below and above the resonant one, see Figure 10 (c).

6.4. LOCAL PROPERTY NEAR A CORNER FORν → 0

Finally, we study geometry A in the sway mode of motion forν = 0 i.e., effectively unit speed
in the horizontal direction. The potentialχ , which is a solution of equation (12) or (13), is
singular at the corners, and behaves there asχ ∼ s2/3 for s → 0, wheres is the distance from
the corner. An analytical solution (in terms of elliptic integrals) by the method of Schwarz-
Christoffel transformations is available for this problem, see Appendix C.

In Figure 11, solutions due to uncompressed systems with a finest resolution corresponding
to J = 4, J = 5 andJ = 6 for the cubic spline wavelet basis are shown. The potentialχ

is graphed against the distances from the corner in double-logarithmic plots, where the slope
of the exact potential becomes 2/3 for s → 0. Together with this is also shown the solution
obtained by the Schwarz-Christoffel transformation. Since the systems are uncompressed,
there are 2J+1+3 uniformly spaced basis functions on each edge, giving 1052, 2012 and 3932

matrix elements, respectively.
In Figure 12 the system forJ = 6 is compressed with thresholdsε = 0·02 andε =

0·1, as before. This reduces the number of matrix elements to approximately 362 and 272,
respectively. The accuracy is not significantly reduced due to the compression. From this we
conclude that the matrix elements discarded are those corresponding to basis functions with
support far away from the corners.

6.5. GEOMETRY WITHOUT CORNERS

We have seen that corners in the geometry causes the matrix of wavelet coefficients to contain
regions with large coefficients, due to the parameter values for the corners being in, or close
to, the supports of the integrals for the coeffcients. After compression, the small elements will
be discarded while the large ones remain. For a geometry without corners we do not get all
these large coefficients. This means that we can get high compression rates, but it also means
that we might have chosen a much coarser discretization in the first place. This is a case where
the wavelet method is not really needed, but it will of course work just as well.

In Figure 13 (b), we have extracted the submatrixDd
3 of Eq. (46) for geometry B, see Fig-

ure 3 (a), and in Figure 13 (c) the corresponding submatrix of level 5 of a half-immersed
circular cylinder as depicted in (a) is shown. We see clearly that the large wavelet coefficients
due to the corners in Figure 13 (b) do not appear to have a counterpart in Figure 13 (c). The
latter does have some areas of larger coefficients, although far less significant than for the
square cylinders, which are due not to corners, but rather to the joinings of polynomial pieces
in the spline used to approximate the semicircle.

When compressed with thresholds chosen to produce the same relative error in integrated
values, likee.g., added mass, the wavelet coefficients for the spherical cylinder are all dis-
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Figure 10. Added massa11, normalized byρT 2
0 , and damping coefficientsb11, normalized byρT 2

0 ω (a). |R|, |T |
and |R|2 + |T |2 (b). The force component|Xj1| normalized with respect to|X1| for a single cylinder, (vertical
axis), vs. cylinder numberj , j = 1, . . . ,15 (horizontal axis). Wavenumbers 0·281≤ ν ≤ 0·283 (c). Crosses and
rings: no compression. Solid lines:a priori compression with compression thresholdε = 0·005. Dashed lines:
a priori compression with compression thresholdε = 0·05. Cubic basis,J = 4, geometry D.
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Figure 11. The potential forν = 0, sway mode of motion, near the corners of geometry A. The potential along
the vertical edge (a) and the horizontal edge (b), with the distance from the corner along the abscissas. The dashed
line corresponds to the Schwarz-Christoffel solution, see Appendix C. The numbern (n = 35,n = 67,n = 131)
of basis functions along each edge is indicated. Cubic spline wavelet basis, no compression, three choices of finest
spaceVJ , J = 4, 5,6.
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Figure 12. As in Figure 11, but with compression. The numbern shown in the figures is the square root of the
number of non-zero matrix elements for each edge after compression. Thresholds areε = 0·02 (givingn = 12)
andε = 0·1 (givingn = 9).

carded, meaning that we get enough accuracy by using just the scaling functions at the coarsest
level.

7. Conclusions

We have applied wavelets, in the form of a multiresolution analysis, for the solution of a
Fredholm integral equation of the second kind that arises in wave analysis of floating bodies.
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Figure 13. Depicted is a circular cylinder (a) and accompanying wavelet coefficientsDd5 (c). Also, corresponding

coefficients (Dd3) from Figure 3 (a) are shown for comparison (b). The basis is the cubic spline basis, and the
wavenumber isν = 0.

The kernel of the integral equation, together with the unknown potential and the right-hand
side of the equation, is expanded in wavelet bases. A linear system with a highly compressible
matrix is thus obtained. The linear system is well conditioned, so the computational load of
solving it is proportional to the number of non-zero matrix elements. We have seen which
matrix elements can be discarded, and for what kind of geometries this method will be ad-
vantageous, namely for geometries with corners. For a kernel without such singularities,i.e.,
resulting from a smooth geometry, the method still works. In this case, however, we could
choose a coarser discretization instead of choosing a fine and uniform discretization followed
by compression. We would still have the nice property of biorthogonality offered by the
biorthogonal spline scaling functions.

Differences between a coarse and fine approximation are represented in terms of the wavelets,
and the compressibility of the matrix is due to the vanishing moments of these wavelets. The
maximal compression rate of the linear system has been estimated, and it is found that for
wavelets with a sufficiently large number of vanishing moments, the wavelet method will give
anO(n) algorithm, wheren is the initial number of (scaling and wavelet) functions in which
the solution is expanded. A practicala priori compression scheme utilising thresholding and a
common compression mask for several wavenumbers has been developed and shown to work
well for selected geometries.

Two kinds of wavelets have been investigated for this purpose, biorthogonal spline wavelets
and Daubechies wavelets. The Daubechies wavelets were found not to be very well suited to
problems involving a large number of small intervals, but it was found that biorthogonal spline
wavelets, in particular cubic ones, are very well suited with respect to accuracy and efficiency.

The method has been applied to arrays of rectangular cylinders. Among others, we have
considered an array of 15 rectangular cylinders. Sufficient accuracy has been achieved with
a high compression ratio in the computation of various hydrodynamic forces and reflec-
tion/transmission properties. The chosen problems also exhibit resonant behaviour, and the
method is performing satisfactorily also in these cases. A more detailed look at the local prop-
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erties near a corner confirms that the compression removes redundancy far from the corner,
without degrading the solution close to the corner.

It is clear that the method will be well suited for complicated and/or large geometries, in
particular where the choosing of trial functions is difficult. In these cases, the compression
will remove redundancy in the initially uniformly distributed trial functions. We will in effect
get an adaptive method with different resolutions, low resolution where the geometry/solution
is smooth, and high resolution where the geometry/solution is less well-behaved.

We believe that the need for solving continuously larger and more complicated problems,
with ever more accuracy, will drive the continued development of adaptive wavelet methods,
and also other adaptive methods. The method here described, based on the biorthogonal spline
wavelets of Mørken and Nygaard [6] is promising. The use of these wavelets can be regarded
as an extension of the use of B-splines. Where approximation spaces spanned by B-splines
have been used, new coarser and finer spaces can easily be introduced, and then the biorthog-
onal spline wavelets are just the basis functions spanning the differences between the original
B-spline approximation and the coarser/finer approximations.

Among the interesting extensions of the method discussed in this work, would bee.g., the
extension to three dimensions, non-uniform knots of the spline wavelets and improvement of
a priori compression schemes.

The extension to three dimensions does introduce some new problems, but not of an in-
tractable nature. If the geometry can be modelled by a set of two-dimensional tensor-product
spline patches, we may also use two-dimensional tensor-products for the expansion of the
solution of the integral equation. The kernel will then have to be expressed in four-dimensional
tensor products of the scaling and wavelet functions, resulting in one new scaling function and
15 wavelets. The actual computation of the wavelet coefficients will also be more critical,
due to the quadruple integrals involved. With respect to the implementation process, the
mere bookkeeping needed will demand some effort. In three dimensions we also get richer
behaviour in the geometry. We do not only have corners, but corners of different kinds and
also edges, which will cause large wavelet coefficients. One will also have to treat degenerate
cases of patches,e.g., rectangular patches with collapsing edges. In spite of these technical
challenges, we expect that (spline) wavelet methods for the solution of wave-body problems
in three dimensions will make it possible to set up even sparser systems than was done here in
two dimensions, without compromising the accuracy.
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Appendix A. Multiresolution analysis

As seen in Section 3, the multiresolution analysis can be regarded as set of nested spaces
with bases which decomposes functions with respect to different frequencies, much like a
decomposition into harmonic functions. One advantage of wavelets is that they arelocal in
space, as opposed to the harmonic functions.

A multiresolution analysis ofL2(R) is more precisely defined as a sequence of closed
approximation spacesVj ⊂ R, j ∈ Z, such that
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1. Vj ⊂ Vj+1,
2. v(x) ∈ Vj ⇔ v(2x) ∈ Vj+1,
3. v(x) ∈ V0⇔ v(x + k) ∈ Vj for all k ∈ Z,
4.
⋃∞
j=−∞ Vj is dense inL2(R),

5.
⋂∞
j=−∞ Vj = {0},

and finally, there must be ascaling functionφ ∈ V0 with a non-vanishing integral such that
the set{φ(x − k)} for all k ∈ Z is a Riesz basis ofV0. (Seee.g., Jawerth and Sweldens [10] or
Daubechies [9], the latter has a definition of the Riesz basis, pp. xviii—xix.)

LetWj be a complementary subspace toVj in Vj+1, Vj +Wj = Vj+1, i.e., all u ∈ Vj+1 is
a sum of uniquev ∈ Vj andw ∈ Wj . The multiresolution analysis is constructed so that there
is a Riesz basis{ψ(t − k)}k∈Z for W0. The functionψ is themother wavelet. It then follows
thatg(t) ∈ Wj if and only if g(2t) ∈ Wj+1. This construction implies that for a givenj , the
functionsφjk andψj

k , given in (20) and (21), constitute Riesz bases for the spacesVj andWj ,
respectively. This is valid for allj , k.

If we denote the projection operator fromVj+1 to Vj by Pj , and the projection operator
from Vj+1 toWj byQj , we can depict the multiresolution analysis like this:

Vj → Vj−1 · · · → V1 → V0
Pj P2 P1

↘ ↘ ↘
Qj

Wj−1

Q2

W1

Q1

W0

f = gj−1 + · · · + g1 + g0 + f0

This illustrates that a function in the spaceVj , which has a high resolution, can be suc-
cessively decomposed into coarser and coarser correction components in the spacesWj−1 to
W0, with a remainder in the spaceV0. We remark that this decomposition of a function from
Vj to Vj−1 ⊕ Wj−1 will be very fast, the complexity of the operation is proportional to the
numbern of basis functions inVj as the operator is a convolution between the sequence of
coefficients for the basis functions inVj and a filter whose length depends on the particular
choice of wavelet basis.

That this is fast is due to the compactness of the support of the scaling function and the
wavelet, for sinceφ ∈ V0, V0 ⊂ V1 and{φ(x − k)|∀k ∈ Z} is a Riesz basis ofV0, there exist
sequences(hk) and(gk) such that

φ(x) = 2
∑
k

hkφ(2x − k),

ψ(x) = 2
∑
k

gkφ(2x − k),

and when the supports ofφ andψ are compact, only a finite number of the coefficientshk and
gk are non-zero. (These are the so-calleddilation equations.)

This is an important feature because the decomposition/reconstruction sequences will have
to be applied for decomposition of the functionsK, H andHD in (12) and (13), in the steps
of the iterative solution of the resultant linear system (discussed in Section 4) and possibly in
the final reconstruction of the solution.

The multiresolution analysis provides us with a convenient space and a corresponding
basis,
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L2 = lim
j→∞Vj =

∞⊕
j=−∞

Wj = span{ψj

k }∞k,j=−∞,

which we truncate to get our approximation spaceVJ ,

VJ =
J−1⊕
j=−∞

Wj =
J−1⊕
j=0

Wj ⊕ V0 = span{φ0
k , ψ

0
k , ψ

1
k , . . . , ψ

J−1
k }∞k=−∞.

For problems naturally defined on an interval, we modify the construction to give the
proper approximation space, see Mørken and Nygaard [6], Cohenet al. [11].

Appendix B. Approximation in wavelet spaces

In order to solve the integral equations (12) and (13), we have to find the coefficientscJH,k
and cJ,k,l defined in (34) and (35). Alternatively, as discussed in Section 5, we may want
to compute the coefficientsdjH , c0

H in (24) andc0,k,l, dhj,k,l, d
v
j,k,l andddj,k,l in (30)–(33) for

j > 0 more directly. Computation of the coefficientsdjH , dhj,k,l , d
v
j,k,l andddj,k,l can be done

by computing the involvedc-coefficients on the next finer levelj + 1, and then perform the
fast decomposition once. Computing coefficientscj,k,l in the two-dimensional case is done by
a generalisation of the procedure for computing coefficientscj,k in the one-dimensional case.
Assume that we have a biorthogonal multiresolution analysis, and a functionf ∈ Vj . (For the
case of an orthogonal multiresolution analysis, the multiresolution analysis is its own dual.)
Taking the inner product〈f, g〉 ≡ ∫ 1

0 f (t)g(t) dt of f = ∑
c
j

l φ
j

l ∈ V and a basis function
φ̃
j

k of the dual spacẽVj , we get

〈f, φ̃jk 〉 = 〈
∑
l

c
j

l φ
j

l , φ̃
j

k 〉 =
∑
l

c
j

l 〈φjl , φ̃jk 〉 = cjk . (B1)

To find an approximationf̂ of f ∈ Vj , we have to compute approximationsĉjk to the
coefficients

c
j

k = 〈f, φ̃jk 〉 =
∫
f (x)φ̃

j

k (x) dx = 2j/2
∫
f (x)φ̃(2jx − k) dx (B2)

= 2−j/2
∫
f (2−j (x + k))φ̃(x) dx (B3)

By using a quadrature rule for the numerical integration, we find an approximation

c
j

k ≈ ĉjk = 2−j/2
n∑
i=1

wif (2
−j (xi + k)). (B4)

There are various options for how to choose the weightswi and nodesxi of the quadrature rule.
Assumingf is smooth enough, one might try to find a Guass quadrature making the integral
exact for polynomials up to a certain degree. One problem with this is that the functionφ̃ not
necessarily satisfy the criteria for the existence of such a quadrature for a given order. Another
drawback is that a new set ofn evaluations off has to be performed for each coefficient
ĉ
j

k . We have used a number ofn uniformly spaced nodes with spacing such that some of
the evaluations for the computation ofĉjk can be reused in the computation forĉjk+1k. For
xi = x0+ i, we see that
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2−j (xi + (k + 1)) = 2−j (xi+1 + k) (B5)

so that in this case only one new evaluation for each newĉ
j

k is necessary. Forf smooth, we
see that

c
j

k − ĉjk = 2−j/2
(

2−j (n+1)
∫
f (n+1)(2−j (x + k))

(n+ 1)! φ̃(x) dx + · · ·
)

making the relative error of this quadrature

|cjk − ĉjk |
|cjk |

= O(hn+1), (B6)

whereh = 2−j .

7.1. NUMERICAL INTEGRATION OF NON-SMOOTH FUNCTIONS

Assume given a functionf ∈ L2(R), where

f =
∑
k

c
j

kφ
j

k +
∑

k,j ′=j,j+1,...

d
j ′
k ψ

j ′
k =

∑
k

(ĉ
j

k + εjk )φjk +
∑

k,j ′=j,j+1,...

d
j ′
k ψ

j ′
k

is a wavelet decomposition of the function. What we seek are the coefficientsc
j

k . We have
seen that we may computeĉjk by means of a quadrature withn uniform nodes, and if we use
these as approximations tocjk , we make an errorεjk , which is of the orderO(hn+1), assuming
thatf is sufficiently smooth. (f∈ Cn) Here,h = 2−j . If we now decomposef with Vj+1j
as the coarsest space, we get

f =
∑
k

c
j+1j
k φ

j+1j
k +

∑
k,j ′≥j+1j

d
j ′
k ψ

j ′
k =

∑
k

(c̃
j+1j
k + εj+1jk )φ

j+1j
k +

∑
k,j ′≥j+1j

d
j ′
k ψ

j ′
k .

The setting is just as above, with the difference that the level is nowj + 1j instead ofj , so
ε
j+1j
k is of order

O((h/21j)n+1) = O((2−j−1j)n+1) = O((2−j (1+1j/j))n+1) = O(h(1+1j/j)(n+1)).

By decomposing the error
∑

k ε
j+1j
k φ

j+1j
k (x) 1j times, we get the components (of the error)

in the spacesWj toWj+1j−1, spanned by all{ψj

k (x)}k, . . . , {ψj+1j−1
k (x)}k, and in addition,

a remainder inVj , which is spanned by{φjk (x)}k. This remainder is of the same order as∑
k ε

j+1j
k φ

j+t
k (x) because no further error (apart from roundoff errors etc.) is introduced by

the decomposition. Let this remainder be called
∑

k ε
j

kφ
j

k (x). Thus, we may write∑
k

ε
j+1j
k φ

j+1j
k =

∑
k

ε
j

kφ
j

k +
∑

k,j ′=j,... ,j+1j−1

γ
j ′
k ψ

j ′
k ,

whereγ ·k is used to denote the parts of the error in theW -spaces. Let us likewise decompose
the actually computed approximations, getting∑

k

c̃
j+1j
k φ

j+1j
k =

∑
k

c̃
j

kφ
j

k +
∑

k,j ′=j,... ,j+1j−1

d̃
j ′
k ψ

j ′
k .

We can now write
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Figure 14. The conformal mappingf from thew-plane to thez-plane.

f =
∑
k

c
j

kφ
j

k +
∑
k,j ′≥j

d
j ′
k ψ

j ′
k =

∑
k

(c̃
j

k + εjk )φjk +
∑
k,j ′≥j

. . . ψ
j ′
k ,

where the last term indicates something in theW -spaces that we are not really interested in.
The error we make by using̃cjk as an approximation tocjk is therefore of order

O(h(1+t/j)(r+1)).

The price we have to pay is that we need 21j times as many evaluations off as a quadrature
with r nodes would require.

Appendix C. Schwarz-Christoffel solution for flow around a square cylinder

For the square cylinder (geometry A) in an unbounded fluid, corresponding to lettingν = 0
in (14), we have compared the results of the higher order methods to the solution obtained by
a Schwarz-Christoffel transformation, see e.g. Kober [16], part IV. The half-plane Im(w) ≥ 0
is transformed by the conformal Schwarz–Christoffel mappingf onto the area above the
piecewise straight line fromRe(z) = −∞ through the vertices{A1 = −1, A2 = −1+i, A3 =
1+ i, A4 = 1} and toRe(z) = ∞, see Figure 14. The mappingf is then given by

df

dw
=

4∏
j=1

(w − aj )−αj /π ,

where the parameters{a1, a2, a3, a4} satisfy the conditions

−∞ < a1 < a2 < a3 < a4 <∞
Aj = f (aj ), j = 1, . . . ,4

∞ = f (∞)
andαj is the change of direction (in radians, counter-clockwise) inAj when traversing the
piecewise straight line from left to right. Thenα1 = α4 = π/2 andα2 = α3 = −π/2. For
the solution of the ‘parameter problem’,i.e., computing the unknownsaj , j = 1, . . . ,4, we
note that one of the parameters may be chosen arbitrarily, and that|a4− a3| = |a2− a1|. One
numerical solution is

a1 = −0·69142660835567
a2 = 0
a3 = 3·33850670375772
a4 = 4·02993331211339.
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Now, if the potential for the flow in thew-plane isφ̂(w), then the corresponding potential
for the flow with the same boundary conditions in thez-plane will beφ(z) = φ̂(f −1(z)), or
φ(f (w)) = φ̂(w).
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